Matt Roth for The New York Times
Dennis M. Sisolak, 72, whose cancer had spread, underwent experimental treatment at Johns Hopkins that allowed his immune system to fight rather than take drugs.
For more than a century, researchers were puzzled by the uncanny ability of cancer cells to evade the immune system. They knew cancer cells were grotesquely abnormal and should be killed by white blood cells. In the laboratory, in Petri dishes, white blood cells could go on the attack against cancer cells. Why, then, could cancers survive in the body?
The answer, when it finally came in recent years, arrived with a bonus: a way to thwart a cancer's strategy. Researchers discovered that cancers wrap themselves in an invisible protective shield. And they learned that they could break into that shield with the right drugs.
When the immune system is free to attack, cancers can shrink and stop growing or even disappear in lucky patients with the best responses. It may not matter which type of cancer a person has. What matters is letting the immune system do its job.
So far, the drugs have been tested and found to help patients with melanoma, kidney and lung cancer. In preliminary studies, they also appear to be effective in breast cancer, ovarian cancer and cancers of the colon, stomach, head and neck, but not the prostate.
It is still early, of course, and questions remain. Why do only some patients respond to the new immunotherapies? Can these responses be predicted? Once beaten back by the immune system, how long do cancers remain at bay?
Still, researchers think they are seeing the start of a new era in cancer medicine.
"Amazing," said Dr. Drew Pardoll, the immunotherapy research director at Johns Hopkins School of Medicine. This period will be viewed as an inflection point, he said, a moment in medical history when everything changed.
"A game-changer," said Dr. Renier J. Brentjens, a leukemia specialist at Memorial Sloan-Kettering Cancer Center.
"A watershed moment," said his colleague, Dr. Michel Sadelain. (Both say they have no financial interests in the new drugs; Dr. Pardoll says he holds patents involving some immunotherapy drugs, but not the ones mentioned in this article.)
Researchers and companies say they are only beginning to explore the new immunotherapies and develop others to attack cancers, like prostate, that seem to use different molecules to evade immune attacks. They are at the earliest stages of combining immunotherapies with other treatments in a bid to improve results.
"I want to be very careful that we do not overhype and raise patients' expectations so high that we can never meet them," said Dr. Alise Reicin, a vice president at Merck for research and development.
But the companies have an incentive to speed development of the drugs. They are expected to be expensive, and the demand huge. Delays of even a few months mean a huge loss of potential income.
Nils Lonberg, a senior vice president at Bristol-Myers Squibb, notes that immunotherapy carries a huge advantage over drugs that attack mutated genes. The latter approach all but invites the cancer to escape, in the same way bacteria develop resistance to antibiotics.
By contrast, immunotherapy drugs are simply encouraging the immune system to do what it is meant to do; it is not going to adapt to evade the drugs.
"We are hoping to set up a fair fight between the immune system and the cancer," Dr. Lonberg said.
Lowering Defenses
The story of the new cancer treatments started with the discovery of how cancers evade attacks. It turned out that they use the body's own brakes, which normally shut down the immune system after it has done its job killing virus-infected cells.
One braking system, for example, uses a molecule, PD-1, on the surface of T-cells of the immune system. If a target cell has molecules known as PD-L1 or PD-L2 on its surface, the T-cell cannot attack it.
So some cancer cells drape themselves in those molecules. The effect, when T-cells are near, is like turning off a light switch. The T-cells just shut down.
Cancers that do not use PD-L1 or PD-L2 are thought to use other similar systems, just starting to be explored. Body systems have a lot of redundancy to tamp down immune attacks. But for now, the PD system showed researchers how cancer cells can evade destruction.
"That is what has been realized in the past few years," said Ira Mellman, vice president of research oncology at Genentech. "Tumor cells are making use of this brake."
The discovery led to an idea: Perhaps a drug that covered up any of those PD molecules, on the cancer cells or on white blood cells, would allow the immune system to do its job.
(There is another immunotherapy strategy — to take white blood cells out of the body and program them with genetic engineering to attack a cancer. Studies have just begun and are promising. But researchers note that this is a very different sort of treatment that is highly labor-intensive and has been successful so far in only a few types of cancer.)
The first indication that a cancer's protective shield might be breached came in 2010, after a trial of the drug ipilimumab in patients with otherwise untreatable melanoma. The drug unleashes the immune system, letting it overwhelm tumors even if they have a protective shield.
Anda sedang membaca artikel tentang
Breaking Through Cancerâs Shield
Dengan url
http://healtybodyguard.blogspot.com/2013/10/breaking-through-canceras-shield.html
Anda boleh menyebar luaskannya atau mengcopy paste-nya
Breaking Through Cancerâs Shield
namun jangan lupa untuk meletakkan link
Breaking Through Cancerâs Shield
sebagai sumbernya
0 komentar:
Posting Komentar